Вторник, 02.07.2024, 16:16Главная | Регистрация | Вход

Форма входа

Поиск

Друзья сайта

Статистика


Онлайн всего: 1
Гостей: 1
Пользователей: 0
СВОЙСТВА СКЕЛЕТНЫХ МЫШЦ

СВОЙСТВА СКЕЛЕТНЫХ МЫШЦ

 

К основным функциональным свойствам мышечной ткани относятся возбудимость, сократимость, растяжимость, эластичность и пластичность.

Возбудимость — способность мышечной ткани приходить в состояние возбуждения при действии тех или иных раздражителей. В обычных условиях происходит электрическое возбуждение мышцы, вызываемое разрядом мотонейронов в области концевых пластинок. Возникающий под влиянием медиатора потенциал концевой пластинки (ПКП), достигнув порогового уровня (около 30 мВ), вызывает генерацию потенциала действия, распространяющегося в обе стороны мышечного волокна.

Возбудимость мышечных волокон ниже возбудимости нервных волокон, иннервирующих мышцы, хотя критический уровень деполяризации мембран в обоих случаях одинаков. Это объясняется тем, что потенциал покоя мышечных волокон выше (около 90 мВ) потенциала покоя нервных волокон (70 мВ). Следовательно, для возникновения потенциала действия в мышечном волокне необходимо деполяризовать мембрану на большую величину, чем в нервном волокне.

Способность мышцы реагировать на раздражение ее двигательного мотонейрона, т.е. на импульсы, приходящие к ней по нерву, обозначается как непрямая возбудимость мышцы. Однако возбудимостью обладает и само мышечное волокно. Это доказывается раздражением участков мышцы, где отсутствуют окончания двигательного нерва.

Можно исключить влияние нервных элементов на мышцу, подвергнув ее отравлению некоторыми ядами (например, кураре). В этом случае возбуждение с нерва на мышцу не передается, но нерв и мышца сами по себе продолжают функционировать, т.е. мышца продолжает реагировать на непосредственно наносимое на нее раздражение. Таким образом, опыты подобного рода с несомненностью устанавливают наличие в мышечном волокне так называемой прямой возбудимости, т.е. способности мышечных волокон реагировать и на раздражение, действующее непосредственно и на них, а не через нервные волокна.

И прямая и непрямая возбудимость мышцы обусловлена функцией мембраны мышечного волокна. Возбуждение в мышцах проводится изолированно, т.е. не переходит с одного мышечного волокна на другое. Скорость распространения возбуждения в белых и красных волокнах скелетных мышц различна: в белых волокнах она равна 12–15, в красных — 3–4 м/с.

В мышцах имеется пассивный упругий компонент, который включает сухожилия, соединительную ткань, покрывающую мышечные волокна, их пучки и мышцу в целом, а также упругие образования боковых поперечных мостиков миозиновой нити. Поэтому скелетная мышца — упругое образование. Упругостью обладают активные сократительные и пассивные компоненты мышцы, которые и обеспечивают растяжимость, эластичность и пластичность мышц.

Растяжимость — свойство мышцы удлиняться под влиянием силы тяжести (нагрузки). Чем больше нагрузка, тем больше растяжимость мышцы. Растяжимость зависит и от вида мышечных волокон. Красные волокна растягиваются больше, чем белые, мышцы с параллельными волокнами удлиняются больше, чем перистые. Даже в условиях покоя мышцы всегда несколько растянуты, поэтому они упруго напряжены (находятся в состоянии мышечного тонуса).

Эластичность — свойство деформированного тела возвращаться к первоначальному своему состоянию после удаления силы, вызвавшей деформацию. Это свойство изучается при растяжении мышцы грузом. После удаления груза, мышца не всегда достигает первоначальной длины, особенно при длительном растяжении или под действием большого груза. Это связано с тем, что мышца теряет свойство совершенной упругости.

Пластичность — (греч.plastikos — годный для лепки, податливый)  свойство тела деформироваться под действием механических нагрузок, сохранять приданную или длину или вообще форму после прекращения действия внешней деформирующей силы. Чем длительнее действует большая внешняя сила, тем сильнее пластические изменения.

Пластичность мышц связана и с остаточным укорочением мышц после длительного тетанического сокращения, или контрактуры. Красные волокна, которые удерживают тело в определенном положении, обладают большей пластичностью, чем белые.

 

Сократимость и виды сокращения мышц

При прямом или непрямом раздражении мышца укорачивается или же развивает напряжение в продольном направлении. Это изменение формы или напряжения мышцы носит название мышечного сокращения, следовательно, сократимость — это специфическая деятельность мышечной ткани при ее возбуждении.

Для изучения свойств мышц в учебных целях и в эксперименте в качестве объекта обычно используют нервно-мышечный препарат лягушки, а в качестве раздражителя — электрический ток. Запись сокращений мышцы на приборе миографе при прямом или непрямом раздражении называется миографией. Скорость и сила ответной реакции скелетной мышцы на раздражение  зависит не только от параметров раздражителя, но и от типа мышечных волокон. Сократимость и возбудимость мышц разного вида различна. 

По скорости сокращения различают быстрые и медленные мышечные волокна. В быстрых волокнах обычно лучше развит саркоплазматический ретикулум, они слабее снабжены кровеносными сосудами, имеют более крупные и длинные волокна, их расслабление после сокращения происходит в 50–100 раз быстрее, чем медленных волокон. Организм для выполнения статической работы (например, поддержание позы) использует главным образом медленные, тонические красные мышцы, а для скоростных движений — быстрые белые мышцы.

Различают различные режимы сокращения мышц, которые определяются частотой и силой поступающих импульсов возбуждения.

На прямые и непрямые раздражения частотой не более 6–8 Гц мышца, состоящая из медленных двигательных единиц, отвечает одиночными сокращениями. Сокращение наступает не сразу после нанесения раздражения, а через определенный промежуток времени, называемый латентным периодом. Его величина составляет для икроножной мышцы лягушки 0,01 с. Фаза укорочения длится 0,04 с, фаза расслабления — 0,05 с.

 Начало сокращения соответствует восходящей фазе потенциала действия, когда он достигает пороговой величины (примерно 40 мВ). У млекопитающих одиночное сокращение скелетных мышц длится 0,04–0,1 с, но оно неодинаково в различных мышцах у одного и того же животного. В красных волокнах мышц оно значительно больше, чем в белых. Если на мышцу действуют два быстро следующих друг за другом раздражения (период между импульсами не более 100 мс), мышечные волокна расслабляются не полностью и каждое последующее сокращение как бы наслаивается на предыдущее. Происходит суммация сокращений, которая может быть полной, когда оба сокращения сливаются, образуя одну вершину, или неполной, в зависимости от частоты раздражений. В обоих случаях сокращение имеет большую амплитуду, чем максимальное сокращение при одиночном раздражении.

 

Тетаническое сокращение мышцы

При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением или тетанусом. Этот термин впервые применил Э. Вебер в 1821 году.

Тетанус может быть  зубчатым (при частоте раздражений 20-40 Гц) или сплошным,  гладким (при частоте 50 Гц и выше). Амплитуда тетанического сокращения в 2–4 раза выше амплитуды одиночного сокращения при той же силе раздражения.

 Гладкий тетанус возникает тогда, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее  высокий при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.

При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.

Импульсы с мотонейронов в условиях покоя участвуют в поддержании мышечного тонуса.

Под тонусом понимают состояние естественного постоянного напряжения мышц при невысоких энергетических затратах. В поддержании тонуса участвуют проприорецепторы мышц (мышечные веретена) и центральная нервная система.

Осуществление тонуса скелетных мышц обусловлено функцией медленных двигательных единиц красных волокон мышц. Тонус скелетных мышц связан с поступлением редких нервных импульсов к мышце, в результате чего мышечные волокна возбуждаются не одновременно, а попеременно. У домашних животных существуют специализированные рефлекторные дуги, одни из которых обеспечивают тетанические сокращения, а другие мышечный тонус. Тонус скелетных мышц играет важную роль в поддержании определенного положения тела в пространстве и деятельности двигательного аппарата.

Типы сокращений мышц

При сближении актиновых и миозиновых фибрилл вследствие замыкания поперечных мостиков в мышечном волокне развивается напряжение (активная механическая тяга). В зависимости от условий, в которых происходит сокращение мышц, развивающееся напряжение реализуется по разному. Различают два основных типа мышечных сокращений — изотонический и изометрический. Когда мышца при раздражении сокращается, не поднимая никакого груза, происходит укорочение мышечных волокон, но их напряжение не меняется и равно нулю, такое сокращение называют изотоническим (греч. isos — равный, tonos — напряжение). В эксперименте изотоническое сокращение получают при электрическом (тетаническом) раздражении изолированной мышцы, отягащенной небольшим грузом. Укорочение мышцы происходит при постоянном напряжении, равном внешней нагрузки.

Изометрическое (греч. isos — равный, meros — мера) — это сокращение, при котором длина волокон не уменьшается, но их напряжение возрастает (сокращение при неизменной длине). В этом случае сократительный компонент укорачивается за счет растяжения пассивного упругого компонента, который может увеличивать свою длину на 2–6 % от длины покоя.

С молекулярной точки зрения напряжение при изотоническом сокращении обеспечивается замыканием и размыканием поперечных мостиков. При этом скорость сокращения зависит от числа замкнутых мостиков, образуемых в единицу времени (чем их меньше, тем больше скорость и соответственно меньше сила сокращения).

При изометрическом же сокращении напряжение в мышечных волокнах создается за счет повторного прикрепления поперечных мостиков на одних и тех же фиксированных участках актиновых нитей.

В естественных условиях деятельности мышц практически не встречается чисто изотоническое или чисто изометрическое сокращение.

Смешанный тип сокращения мышц, при котором изменяются длина и напряжение, называется ауксотоническим. При совершении животным сложных двигательных актов все работающие мышцы сокращаются ауксотонически — с преобладанием либо изотонического, либо изометрического типа сокращения.

Copyright MyCorp © 2024 | Сделать бесплатный сайт с uCoz